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a  b  s  t  r  a  c  t

Alzheimer’s  disease  (AD)  is  an  irreversible  neurodegenerative  disorder  with  progressive  impairment
of  memory  and  cognitive  functions.  Structural  magnetic  resonance  images  (MRI)  play  important  role  to
evaluate  the brain  anatomical  changes  for AD  Diagnosis.  Machine  learning  technologies  have  been  widely
studied  on  MRI  computation  and  analysis  for quantitative  evaluation  and  computer-aided-diagnosis  of
AD. Most  existing  methods  extract the  hand-craft  features  after  image  processing  such  as  registration
and  segmentation,  and  then  train  a classifier  to distinguish  AD  subjects  from  other  groups.  Motivated  by
the success  of  deep  learning  in image  classification,  this  paper  proposes  a classification  method  based  on
multiple  cluster  dense  convolutional  neural  networks  (DenseNets)  to  learn  the various  local  features  of
MR brain  images,  which  are combined  for  AD  classification.  First,  we partition  the  whole  brain  image  into
different  local regions  and  extract  a number  of 3D  patches  from  each  region.  Second,  the  patches  from
each  region  are  grouped  into  different  clusters  with  the  K-Means  clustering  method.  Third,  we  construct
a  DenseNet  to  learn  the patch  features  for  each  cluster  and  the  features  learned  from  the  discriminative
clusters  of  each  region  are  ensembled  for classification.  Finally,  the  classification  results  from  different
local  regions  are combined  to  enhance  final  image  classification.  The  proposed  method  can  gradually
learn  the MRI  features  from  the local  patches  to  global  image  level  for  the  classification  task.  There  are
no  rigid  registration  and  segmentation  required  for preprocessing  MRI  images.  Our  method  is  evaluated

using  T1-weighted  MRIs  of  831  subjects  including  199  AD patients,  403  mild  cognitive  impairment  (MCI)
and  229  normal  control  (NC) subjects  from  Alzheimer’s  Disease  Neuroimaging  Initiative  (ADNI)  database.
Experimental  results  show  that  the proposed  method  achieves  an  accuracy  of  89.5%  and  an AUC  (area
under  the  ROC  curve)  of  92.4%  for AD vs.  NC  classification,  and  an  accuracy  of 73.8%  and  an  AUC  of  77.5%
for  MCI vs.  NC classification,  demonstrating  the  promising  classification  performances.

© 2018  Elsevier  Ltd. All  rights  reserved.
. Introduction

Alzheimer’s disease (AD) is an irreversible brain disorder with
rogressive impairment of the memory and cognitive functions.

t is the most common case of dementia in the late life of humans.
ild cognitive impairment (MCI) is a transitional state from healthy

o dementia and it is usually considered as a clinical precursor
f AD. Currently, there are no effective cure for AD. But some
reatments can be developed to delay its progression, especially

f AD can be diagnosed at an early stage. Thus, its early diagno-
is is important for patient care and treatment. But it is still a
hallenging problem for accurate and early diagnosis of AD/MCI

∗ Corresponding author at: Department of Instrument Science and Engineering,
chool of EIEE, Shanghai Jiao Tong University, Shanghai, 200240, China.

E-mail address: mhliu@sjtu.edu.cn (M.  Liu).

ttps://doi.org/10.1016/j.compmedimag.2018.09.009
895-6111/© 2018 Elsevier Ltd. All rights reserved.
in clinic. Magnetic resonance images (MRI) including structural
magnetic resonance images (sMRI) and functional MRI (fMRI) are
non-invasive and powerful imaging tools to help understand and
evaluate the anatomical and functional neural changes related to
AD (Herrup, 2011; Jr et al., 2011; Liu et al., 2014). In recent years,
extensive efforts have been done to develop computer-aided sys-
tem using the various machine learning methods to decode the
disease states with MR  images (Herrup, 2011; Jr et al., 2011; Zhang
et al., 2011; Liu et al., 2013; Suk et al., 2015).

Since the raw MR brain image is too huge to be directly used
for classification, it is necessary to preprocess the MR  images and
perform the feature extraction and classification for disease diag-
nosis. One of the most widely used methods is to partition the

image into multiple anatomical regions, i.e., regions of interest
(ROIs), through the warping of a labeled atlas, and the regional
measurements such as volumes are computed as the features for AD

https://doi.org/10.1016/j.compmedimag.2018.09.009
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2018.09.009&domain=pdf
mailto:mhliu@sjtu.edu.cn
https://doi.org/10.1016/j.compmedimag.2018.09.009
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lassification (Herrup, 2011; Zhang et al., 2011; Suk et al., 2015). For
eature selection, a discriminative multi-task method was  proposed
o select the most discriminative features from 93 ROIs for multi-

odality classification of AD/MCI (Ye et al., 2016). Furthermore,
 hierarchical feature and sample selection framework was  pro-
osed to gradually select informative features from 93 predefined
OIs and discard ambiguous samples for improving classifier learn-

ng (Le et al., 2017). A multi-kernel learned method was combined
ith marginal fisher analysis to simultaneously select a subset of

he relevant brain ROIs and learn a dimensionality transformation
Cao et al., 2017). In addition to the ROI features, deep learning
etworks were recently used to extract the latent high-level fea-
ures from measurements of ROIs for AD classification (Zhang et al.,
011; Suk et al., 2015). A stacked autoencoder was  investigated
o learn the latent high-level features from ROIs for improvement
f classification performance (Suk et al., 2015). A novel diagnos-
ic framework with stacked autoencoder was proposed to learn
igh-level features of ROIs and with a zero-masking strategy for
ata fusion of multiple image modalities (Liu et al., 2015aa and
). Although promising results of brain image analysis have been
eported, there are still some limitations in the ROI based methods.
irst, the definition of ROIs requires the accumulation of long-term
xperience of researchers. Second, the segmentation of ROIs is also
ffected by the individual differences and subjective factors of sci-
ntific researches. Third, the morphological abnormalities caused
y the brain disorders do not always occur in the pre-defined ROIs,
nd they may  involve multiple ROIs or part of the extracted ROI, so
he performance may  not be stable.

Instead of partitioning the brain image into ROIs, a landmark-
ased feature extraction method was proposed for fast AD
iagnosis without nonlinear registration and tissue segmentation
Zhang et al., 2016). A number of landmark points were detected
ased on shape constraint and the morphological features were
xtracted from the landmarks to train a linear SVM classifier for AD
iagnosis. Furthermore, the landmark-based method was extended
or analysis of longitudinal MR  images (Zhang et al., 2017). The
igh-level statistical spatial and contextual longitudinal features
ere extracted from the landmarks to capture the spatial structural

bnormalities and longitudinal variations, which were input to
rain a linear SVM classifier for AD diagnosis. The circular harmonic
unctions (CHFs) were investigated to extract the local features
rom the most involved areas of the disease: Hippocampus and Pos-
erior Cingulate Cortex (PCC) in three brain projections and classify
he brain images (Ben et al., 2015).

In recent years, the deep learning methods have been widely
nvestigated to jointly learn the features from the images and
lass discrimination for image classification and computer vision
Simonyan and Zisserman, 2014; Zhu et al., 2017). They also
chieved great success to learn the feature and identify the patterns
or medical image analysis and computer aided disease diagno-
is (Shen et al., 2017). Different from the traditional methods that
xtracts the handcrafted features with domain specific knowledge,
eep learning can construct a deep neural network architecture
o learn the hierarchical representations from the raw image data.
hus, the complex patterns can be identified with deep learning.
onvolutional neural networks (CNNs) were investigated to learn
he features of MR  brain images for AD diagnosis (Adrien, 2015,
osseini-Asl et al., 2016). A deep 3D convolutional neural network

3D-CNN) was built upon a 3D convolutional Autoencoders to cap-
ure the anatomical shape variations of the structural MRI  scans
o predict AD (Hosseini-Asl et al., 2016). This method can learn
he features from the raw image data to capture AD biomarkers

nd adapt to different domain datasets. A deep learning classifica-
ion algorithm was proposed for AD diagnosis using both structural
nd functional MRI  (Adrien, 2015). In this method, the CNN model
as built with one convolutional layer trained with sparse Autoen-
g and Graphics 70 (2018) 101–110

coder, which was  explored to extract the imaging features for AD
classification. The above methods can learn the features captur-
ing AD biomarkers via convolutional network. But they require
the convolutional filters pretrained on Autoencoder with carefully
preprocessed data to extract features and then classify them for
task-specific target. A landmark based deep feature learning (LDFL)
framework was proposed for automatic diagnosis of AD using MRI
(Liu et al., 2018). A number of discriminative anatomical landmarks
were identified in a data-driven manner and a set of patches were
extracted from the landmarks to build a deep CNN for automatical
extraction of patch-based representation from MRI. A novel deep
ensemble sparse regression network was  proposed that combines
the sparse regression and deep learning for diagnosis and prognosis
of AD and MCI  (Suk et al., 2017). By regarding the response values
of the sparse regression models as target-level representations, a
deep CNN was built for clinical decision making. A classification
method was  proposed by ensemble of multiple deep 3D convo-
lutional neural networks (3D-CNNs) to learn the various features
from local brain regions for AD classification, which can alleviate
the problem of small number of training samples (Cheng and Wang,
2017).

Recently, DenseNet (Huang et al., 2016) was  proposed as a new
structure of deep convolutional neural network, which connects
each layer to every other layers in a feed-forward fashion to cap-
ture and reuse the rich features of different layers and thus achieves
better performance than other CNN. Motivated by the success of
DenseNet in computer vison, this paper proposes a novel classifi-
cation method based on combination of multiple cluster DenseNets
for MR  brain image classification and disease diagnosis. Instead
of extracting the region of interests (ROIs) predefined by human
experts, we uniformly partition the whole brain image into 3 × 3 × 3
different regions and a number of 3D patches are sampled and
extracted from each region. Then, K-means clustering is applied
to group the patches from one region into different clusters and
a deep DenseNet is trained for each cluster. The features learned
by multiple cluster DenseNets are aggregated for the representa-
tion of local region. Finally, classification results of multiple local
regions are combined to make the final classification. Compared
to the existing methods, our proposed method has the following
advantages: 1) it can alleviate the problem of small image set on
training DenseNet. Usually training a DenseNet requires a large
image set, which is not applicable for AD diagnosis. Instead of train-
ing a deep DenseNet with the whole brain image, we can build a
DenseNet on each cluster with a number of local image patches
sampled from image region for network training. 2) No tissue and
ROI segmentations are required in image processing, which can
simplify the diagnosis procedure and save the computation costs.
3) No rigid registration is required before feature extraction, which
can reduce the computation costs. Clustering is used to group sim-
ilar image patches into clusters, which can achieve the robustness
of image variances.

The rest of this paper is organized as follows. In Section 2, we
present the materials and the proposed method in details. In Sec-
tion 3, we provide the experiments and results. A conclusion will
be given in Section 4.

2. Proposed method

In this section, we  will present the proposed classification
framework in detail. Our proposed method makes no assumption
on a specific neuroimaging modality. The T1-weighted MR  brain

images are widely available, non-invasive and often used as the first
biomarker in AD diagnosis. Thus, they are used to test the proposed
method in this work. For brain image analysis, one direct way is to
build a deep DenseNet with the whole 3D image for feature learn-
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ig. 1. An overview of our proposed classification framework which consists of ima
nd  final ensemble classification.

ng and classification jointly. However, training deep DenseNet may
e challenged by the risk of over-fitting as the MR  image sets for
D diagnosis are relatively small compared to computer vision task
uch as face recognition. In addition, due to the huge size of 3D MR
mage, training a deep DenseNet on the whole brain image not only
equires high computation and memory costs but also inefficient to
dentify the abnormal changes relevant to AD. In this paper, we pro-
ose a classification framework by combination of multiple cluster
enseNets for classifications of AD vs. NC and MCI  vs. NC, as shown

n Fig.1. It consists of four main steps: 1) image acquisition and
rocessing; 2) patch extraction and clustering; 3) construction of
ultiple cluster DenseNets; 4) final ensemble classification. These

teps will be presented in the following subsections.

.1. The image set and processing

The MR  brain images used in this paper were obtained from
he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by
he National Institute on Aging (NIA), the National Institute of
iomedical Imaging and Bioengineering (NIBIB), the Food and
rug Administration (FDA), private pharmaceutical companies and
on-profit organizations, as a $60 million, 5-year public–private
artnership. The primary goal of the ADNI was to test whether serial
agnetic resonance imaging (MRI), Positron Emission Tomography

PET), other biological markers, and clinical and neuropsychologi-
al assessment can be combined to measure the progression of mild
ognitive impairment (MCI) and early Alzheimer’s disease (AD).
etermination of sensitive and specific markers of very early AD
rogression is intended to aid researchers and clinicians to develop
ew treatments and monitor their effectiveness, as well as reduce
he time and cost of clinical trials. The principal investigator of this
nitiative is Michael W.  Weiner, M.D., VA Medical Center and Uni-
ersity of California, San Francisco. ADNI was the result of efforts

f many co-investigators from a broad range of academic institu-
ions and private corporations. The study subjects were recruited
rom over 50 sites across the U.S. and Canada and gave written
nformed consent at the time of enrollment for imaging and genetic
cessing, patch extraction and clustering, construction of DenseNet for each cluster

sample collection and completed questionnaires approved by each
participating sites Institutional Review Board (IRB).

In this work, we use the T1-weighted MR  imaging data from
the baseline visits of 831 participants including 199 AD, 403 mild
cognitive impairments (MCI) and 229 normal controls (NC) for eval-
uation. The details of the subjects used are shown in Table 1. In
ADNI, the T1-weighted MR  images are acquired sagittally using
the volumetric 3D MPRAGE with 1.25 × 1.25 mm2 in-plane spatial
resolution and 1.2 mm thick sagittal slices. Most of these images
were obtained with 1.5T scanners, while a few were acquired
using 3 T scanners. Detailed information about MR  acquisition
procedures is available at the ADNI website. The MR  images are
processed as follows. Specifically, all MR  images are skull-stripped
and cerebellum-removed after a correction of intensity inhomo-
geneity using a nonparametric nonuniform intensity normalization
(N3) algorithm (Sled et al., 1998; Wang et al., 2011). The linear reg-
istration is performed to align the MR images to a template with
FSL (FMRIB Software Library) 5.0 from https://fsl.fmrib.ox.ac.uk/.

2.2. Patch extraction and clustering

The goal of this step is to partition the whole MR  brain image into
a number of local regions and extract 3D patches from each region
for clustering. To facilitate training the DenseNet and extraction
of local features, we  propose to uniformly partition the MR image
into 3 × 3 × 3 local regions of the same size. Since no rigid regis-
tration is performed on the images, there are some spatial shifts
and deformations in the image regions which may  result in dif-
ferent image spatial structure on the same region. In addition, the
dementia of different subjects may  have the abnormal changes in
different brain regions. To alleviate these problems, we  extract a
number of 3D image patches of fixed size 32 × 32 × 32 at a step
of 2 voxels from each local region. Thus, there are a large number
of 3D patches which are heterogenous with different spatial infor-
mation. It is necessary to find the groups of patches with similar

spatial structure to capture the characteristics of local regions. To
achieve this, we  apply K-means clustering method (Hartigan and
Wong, 1979) to group the patches from each local region into K clus-
ters. Since the length of vector by concatenating the 32 × 32 × 32

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
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Table  1
Demographic characteristics of the studied subjects from ADNI database (the values are denoted as mean ± standard deviation).

Diagnosis Number Age Gender (M/F) MMSE Education CDR

AD 199 75.43 ± 6.0 101/98 23.45 ± 2.1 14.66 ± 3.2 0.8 ± 0.25
MCI  403 74.9 ± 7.2 260/143 27.18 ± 1.7 15.75 ± 2.9 0.5 ± 0.03
NC  229 75.93 ± 5.0 119/110 28.93 ± 1.1 15.83 ± 3.2 0 ± 0

MMSE: the Mini-Mental State Examination; CDR: the Clinical Dementia Rating.
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Fig. 2. The patches extracted at three different positio

atch is very high, the computation efficiency is low for clustering.
rincipal component analysis (PCA) is used to reduce the dimen-
ion from 32,768 to 2000 for each patch. Then, the patches with
he reduced feature dimension from the same region are grouped
y K-mean clustering into many clusters with each cluster having
imilar image structure.

The number of clusters K has an important effect on cluster-
ng of different patches and the following feature extraction and
lassification. The variances of patches are usually caused by two
ain factors. First, the patches extracted from different positions
ay  have different image structures resulting high variances. Sec-

nd, the anatomical changes by disease cause variance of patches
ven from the same position. Fig. 2 (a) and (b) shows the patches
xtracted at three different positions in the hippocampus region
or an AD and a NC subject, respectively. We  can see that the vari-
nce of patches extracted at different positions is much larger than
hat of patches extracted at same position for different classes of
ubjects. It is better to capture the position variance using differ-

nt clusters while the anatomical changes by disease still remain
n the intra-clusters. If K is set too large, the clusters will be small
nd the patches within the clusters will have high similarity, which
esulting in the small class discriminability for the patches from one
he hippocampus region for (a) AD and (b) NC subject.

cluster. In addition, large K requires more computation cost for clus-
tering. On the contrary, if K is set too small, the clusters will be large
consisting of many patches with large variance. This variance may
be caused by different positions which reduces class discriminabil-
ity of the patches within cluster. In our experiment, we  extract the
patches from 96 different positions and there is high similarity on
the patches from the neighboring 9 positions. To balance this trade-
off, K is set to about 10 in this work. In the following Section 3.4, we
will test the proposed method with different numbers of clusters
K. The results show that it can achieve optimal results by setting K
to 10.

2.3. Multi-cluster dense convolutional networks

After patch extraction, features are extracted to capture the
patch-level discriminative patterns of MR  images. As mentioned
above, the patches in one cluster have the similar spatial structure
information in the close image positions. In addition, the patches of

different clusters may  have different discriminative power for AD
classification. Convolutional neural networks (CNNs), which alter-
natively stacks several convolutional and pooling layers followed
by fully connected and softmax layers, have been widely inves-
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Table 2
The architecture of the DensNet.

Layers Output Size Filter size, stride,
number

Input Layer 32 × 32 × 32 –
Convolution 32 × 32 × 32 3 × 3×3, 1, 16, conv
Dense Block (1) 32 × 32 × 32 3 × 3×3, 1, 12, conv
Transition Layer (1) 32 × 32 × 32

16 × 16 × 16
3 × 3×3, 1, 28, conv
2 × 2×2, maxpooling

Dense Block (2) 16 × 16 × 16 3 × 3×3, 1, 12, conv
Transition Layer (2) 16 × 16 × 16

8 × 8×8
3 × 3×3, 1, 40, conv
2 × 2×2, maxpooling

Dense Block (3) 8 × 8×8 3 × 3×3, 1, 12, conv
Global Average Pooling 52 –

numbers of patches assigned for each cluster. To facilitate further
ig. 3. The structure of proposed DenseNet with three dense blocks for each brain
egion.

igated to learn features for image classification. To enhance the
epresentation power, CNNs become increasingly deep so that the
nput information passes through many layers to reach the end of
etwork. The low-level features will lose some important informa-
ion when they are transformed to the high-level layer. To address
his problem, the Dense Convolutional Network (DenseNet) was
roposed to connect each layer to every other layer in a feed-
orward fashion, which increases direct connections between the
ow and high level layers (Huang et al., 2016). In the DenseNet,
he layers from different levels are connected densely to improve
nformation flow between layers. Compared to the traditional deep
NNs, the DenseNets have several compelling advantages (Huang
t al., 2016). First, they can alleviate the vanishing-gradient prob-
em since there is a direct connection from the low to high level
ayers. Second, feature propagation is strengthened to encourage
he reuse of some features especially the low-level features. Third,
hey can substantially reduce the number of network parameters.
hus, DenseNet can achieve better performance than the traditional
eep CNN for image classification.

Motivated by the success of DenseNets, we propose to con-
truct a 3D DenseNet with the 3D image patches from each cluster
o learn the patch-level representations of local image regions.
hus, multiple cluster DenseNets are constructed to capture the
bnormal changes of the local brain region caused by dementia
nd aggregated for representation of the whole brain. The mul-
iple cluster DenseNets share the same deep network structure
s shown in Fig. 3. The detailed parameters of the DenseNet are
hown in Table. 2. Since different clusters capture different spatial

mage structures of local regions, a DenseNet is trained with all the
atches from one cluster, and the patches’ label is same as their
ubject label. Thus, multiple DenseNets have different network
Full-connected layer 10 –
Softmax Layer 2 –

weights to learn the specific discriminative features of different
clusters. The DenseNet model contains three dense blocks, and each
block consists of three layers: one convolutional layer, one batch
normalization layer, and one activation layer (Relu). For convolu-
tional layers, each side of the inputs is zero-padded by one pixel
to keep the feature-map size fixed, and all layers have the same
feature-map sizes and are directly connected with each other. The
layers between two  dense blocks are transition layers to reduce
the feature-map size, which consists of four layers: one convolu-
tional layer, one dropout layer, one maxpooling layer and one batch
normalization layer. The input and output of dense blocks are con-
catenated as the input of transition layers. After each convolutional
layer, output size is same as input size, and the maxpooling layers
are used to down-sample the input feature map  along the spa-
tial dimensions. The fully connected layer consists of a number of
output neurons. Each neuron outputs the learned linear combina-
tion of all the inputs from the previous layer and passed through a
nonlinearity. All layers receive the direct supervision from the loss
function through the shortcut connections. Each DenseNet is opti-
mized individually for the classification task by a softmax layer to
output the class probabilistic score. Thus, the subject label infor-
mation is used through back-propagation for learning the most
relevant features and updating the weights of DenseNet model. The
output of last fully connected layer in each cluster DenseNet is con-
sidered as the learned patch-level representation features for the
cluster. After training of cluster DenseNets, we select the most dis-
criminative DenseNets with high classification accuracies on the
validation sets, from which the learned patch-level features will be
combined for the representation of local brain regions.

2.4. The final ensemble classification

For final image classification, we gradually combine the multi-
ple DenseNets trained for different clusters to generate the final
ensemble classification of MR  brain images. The patch-level fea-
tures from selected clusters are aggregated to cluster and regional
representations which are finally ensembled for global image level
classification. This stage is an ensemble stage and it contains two
parts. One part is the combination of cluster outputs for represen-
tation of each local region. Another one is the ensemble of outputs
from different local image regions for final global image classifica-
tion.

First, for each image region, different clusters may  have different
discriminative power for AD classification. Thus, we choose sev-
eral clusters with higher classification accuracy on the validation
data for ensemble. In addition, different subject may  have different
processing, we need to generate a feature vector of fixed length
with the DenseNet for representation of each image region. Let Xijk

denote the output features of patch k in the cluster j of subject i. For
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luster j, assume that the subject i have K patches, the aggregated
eatures of subject i for the cluster are calculated as:

ij =
k=K∑

k=1

Xijk/K (1)

here Xij is the output features of cluster j for subject i, and Xijk is
he output of fully connected (FC) layer in the DenseNet for patch
. If there are no patches from subject i in cluster j, we use zeros to
eplace the output of FC layer. In this way, the patch-level represen-
ation features are aggregated into a cluster level representation.

There are multiple clusters grouped for each brain region with
ach cluster capturing the specific pattern. After aggregating the
atch-level features for each selected cluster, the features of multi-
le discriminative clusters are further integrated for representation
f the local image region. To achieve this, we concatenate the output
eatures of the selected clusters as one vector:

i = H[Xi1, ..., Xij] (2)

here Xi is the representation feature vector for subject i and Xi1
s the feature vector for the first chosen cluster, and H is the con-
atenating function. After generating the features for each image
egion, we append a fully-connected and a softmax layers with the
ask of AD classification. The fully-connected and softmax layers
re trained with back-propagation for learning the most relevant
eatures to generate the class prediction scores for the region. Thus,
he cluster-level features are combined for regional discrimination.

Second, we ensemble the predict scores of different image
egions for final classification of whole brain image. We  concate-
ate the predict scores of image regions into a feature vector. And a
wo-layer network with a full connected layer and a softmax clas-
ification layer is finely trained to make the final classification for
ach subject. Our proposed method can gradually aggregate the
atch level information from cluster level to region level and finally
enerate the global image level classification. In our deep learn-
ng model, the multiple cluster DenseNets extract discriminative
mage features, while the upper fully connected and softmax layers
acilitate the task-specific classification. Thus, training of the pro-
osed method consists of pre-training individual DenseNets, and
he task-specific fine-tuning for ensemble classification. Initially, a
D DenseNets is pre-trained for each cluster by directly mapping
he outputs of the fully connected layer to the probabilistic scores
f all class labels with a softmax function. Then, the patch-level fea-
ures are integrated into regional features to train the upper fully
onnected and softmax prediction layers for the classification task.

In summary, our proposed classification method is a deep learn-
ng based model, which can gradually learn the features of MR
rain images from the local patches to global image level. Specially,
e learn the patch-level features using multiple cluster DenseNets

o capture the local spatial structure information, which are fur-
her aggregated to the regional representation and ensembled for
nal image level classification. These multi-level feature learnings
re incorporated into the classification task learning process. Com-
ared to the existing methods for classification of MR  brain images,
ur proposed method has the following advantages. First, no seg-
entation and rigid registration are required in image processing

efore feature extraction, which can simplify the diagnosis pro-
edure and save the computation costs. Second, it is a data driven
ethod by jointly learning the features and classification task with-

ut requiring the prior knowledge of domain experts. Third, instead
f training one DenseNet on the whole brain image, the proposed

ethod trained multiple cluster DenseNets to learn the features

f different local image regions with the sampled image patches.
his can address the problem of small image set on training a deep
earning model.
g and Graphics 70 (2018) 101–110

3. Experimental results

In this section, we  will first introduce the image datasets and
implementation of our proposed method. Then, we  will present
the extensive experiments to test the proposed method on classi-
fications of AD vs. NC and MCI  vs.NC. We  will further compare our
proposed method with other methods reported in the literature
and give the discussion.

3.1. Datasets and implementation

The proposed classification method is tested on the T1-weighted
MR  brain images from ADNI database. The MR  images are taken
from the baseline visits of 831 participants including 199 AD, 403
MCI  and 229 NC for evaluation. The proposed method is tested on
classifications of AD vs. NC and MCI  vs. NC. The image processing
is conducted as illustrated in Section 2. The size of MRI  image after
processing is 256 × 256 × 256 voxels. We  down-sample the images
by 2 and remove the voxels whose intensity values are zeros. The
brain images of size 98 × 78 × 76 voxels are obtained for test and
this image is uniformly partitioned into 3 × 3×3 regions. A num-
ber of 3D image patches are extracted from each region and are
grouped into many clusters. And a deep 3D DenseNet is trained for
each cluster. After training of multiple 3D DenseNets, the discrimi-
native cluster DenseNets with high classification accuracies on the
validation sets are considered for further processing. The proposed
method is implemented with python 2.7.9 and the DenseNets are
constructed with the Keras library in the framework of Tensor flow.
For training the DenseNets, the initial weights for whole network is
uniform, which is default in Keras. Adam optimizer is adopted with
a low learning rate of 1 × 10-4, The networks are stable after itera-
tion of 70 epochs. The batch size is set to 128. Relu activation is used
for each neuron of DenseNets. All the experiments are conducted in
the environment of Ubuntu14.04-x64/ GPU of NVIDIA GeForce GTX
1080 Ti. The L2 regulation and dropout are also used to address the
overfitting problem.

To evaluate the classification performance, we use a 5-fold
cross-validation strategy to train and test the proposed method to
reduce the effects of random factors. Each time, one fold of data
set is used for testing, while the other folds were used for train-
ing. The training set is further split into training and validation
parts. The validation part is used for finetuning the iteration num-
bers of the training process to obtain the model weights with the
optimized performance. In our experiments, four classification per-
formance measures are used for evaluation including classification
accuracy (ACC), sensitivity (SEN), specificity (SPE), receiver oper-
ating characteristic curve (ROC) and area under ROC curve (AUC).
ACC is computed as the proportion of correctly classified subjects
among the whole population. SEN is computed as the proportion of
correctly classified positive samples (AD/MCI subjects) among the
total number of positive samples. SPE is the proportion of correctly
classified negative samples (NC subjects) among the total number
of negative samples.

3.2. Test the effectiveness of different number of clusters K

As stated in Section 2, the number of clusters K has important
effect on the following feature extraction and classification. Small
K cannot partition the patches from different locations very well
while large K will generate small clusters with no enough patches
from different subjects for training the DenseNet. Thus, we test the
proposed method by adjusting the number of clusters K by 5, 10,

15 to compare their performances. First, we  test the classification
accuracy of each individual cluster with the DenseNets for different
number of clusters. Fig. 4 shows the comparison of classification
accuracy of the K (K = 5, 10, 15) clusters with the DenseNets for
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Fig. 4. Comparison of classification accuracies of K (K = 5, 10, 15) clusters with the DenseNets for classifications of (a) AD vs. NC and (b) MCI  vs. NC, where each bar denotes
the  classification accuracy of one cluster.

Table 3
Comparison of classification accuracies with different K for classifications of AD vs.
NC, and MCI  vs. NC.

K
AD vs. NC (%) MCI  vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC
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Table 4
Comparison of the classification performances with three level features for classifi-
cations of ad vs. nc and mci  vs. nc.

Methods
AD vs. NC (%) MCI  vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC
5 88.1 88.0 88.2 92.3 70.6 78.2 57.2 72.9
10  89.5 87.9 90.8 92.4 73.8 86.6 51.5 77.5
15  89.7 86.4 92.6 93.7 74.0 86.6 52.0 73.7

lassifications of AD vs. NC and MCI  vs. NC. We  can see that the
lassification performance is poor for K = 5 and it is improved by
ncreasing K to 10. When K is increased to 15, the classification per-
ormances of some clusters are significantly reduced. The average
lassification performance of K clusters is optimal with K = 10.

In addition, we also compare the final ensemble classification
erformances of the proposed method by setting different number
f clusters as shown in Table 3. From these results, we  can see that
he classification accuracies are improved about 1.4% and 3.2% by
ncreasing K from 5 to 10 for classifications of AD vs. NC and MCI
s. NC, respectively, but they cannot be further improved much by
urther increasing K from 10 to 15. As for the computation cost, the
roposed method includes offline training and online testing pro-
esses. The offline training process includes the K-means clustering
nd DenseNets training. Large K will increase the computation of
lustering. Since we need to train a DenseNets for each cluster, more
omputation is required to train the DenseNets for large K. The K-
eans clustering is implemented with MATLAB software while the
enseNets is implemented with Python in our experiments. The
ffline training process takes 2.6, 3.3, 4.6 h for K = 5, 10 and 15,
espectively. The online test for one subject takes about 0.42, 0.84,
.26 s on average for K = 5, 10 and 15, respectively. Based on these
esults, K is set to 10 in the experiments.

.3. Test the effectiveness of representation features at different
evels

In this section, we perform the experiments to test the effec-
iveness of the representation features at different levels. For fair
omparison, the only difference is the features used for classifi-
ation and the following classifier models are same. We  compare
he classification performances using the representation features
earned from the cluster level, region level and final image level. For
he cluster level, we select the cluster DenseNet with the best classi-
cation performance for comparison, denoted as “Cluster level”. For

he region level, we select the image region with the best classifi-
ation performance for comparison, denoted as “Region level”. The
Image level” represents the final classification performance of the
hole brain image by the proposed method. Table 4 demonstrates
Cluster level 84.0 77.1 90.0 90.4 69.0 86.1 39.6 71.9
Region level 85.2 88.2 81.9 92.3 70.5 89.7 35.4 72.0
Image level 89.5 87.9 90.8 92.4 73.8 86.6 51.5 77.5

the comparison of classification performances at three different
levels for AD vs. NC and MCI  vs. NC. Furthermore, the ROC curves
for classifications of AD vs. NC and MCI  vs. NC are shown in Fig.5
(a) and (b), respectively. From these results, we  can see that the
representation features of region level can improve the classifica-
tion performances about 1.2% by aggregating the representation
features of cluster level for classification of AD vs. NC. By ensemble
of region level representations, the final image-level classification
accuracy is improved about 4.3% and 3.3% compared to the region
level classification for classifications of AD vs. NC and MCI  vs. NC,
respectively.

3.4. Comparison with other methods

In this section, we conduct the experiments to compare the
proposed method with other methods. For fair comparison, the
experiments are performed on the same training and test data set.
The first experiment is to compare the proposed method between
the DenseNet with other deep learning models. We  conduct the
experiments by replacing the DenseNet with other well-known
deep learning models such as LeNet-5 (Lécun et al., 1998) and
ResNet (He et al., 2016). All other steps such as cluster selection and
ensemble classification are same as our proposed method. The deep
LeNet-5 consists of three convolutional layers with each followed
by a subsampling layer, one fully connected layer and an output
layer of Gaussian connection (Lécun et al., 1998). The ResNet is a
residual learning framework to ease the training of deeper net-
works than those used previously (He et al., 2016). The ResNet
achieved the best classification performance in the 2015 ImageNet
competition. The layers are reformulated as learning residual func-
tions with reference to the layer inputs. In our experiments, we
download their source codes and implement these methods with
our best efforts by modifying the 2D convolutions with the 3D con-
volutions. The classification results for AD vs. NC and MCI  vs. NC
are compared in Table 5. We  can see that DenseNet performs bet-

ter than the LeNet-5 and ResNet because it can make full use of
multi-layer rich features.

The second experiment is to compare our proposed method to
some other methods that are also based on T1-weighted struc-
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Fig. 5. Comparison of ROC curves on the three level features for classifications of (a) AD vs. NC and (b) MCI  vs. NC.

Table 5
Comparison of the classification performances between DenseNet and other deep
learning methods.

Methods
AD vs. NC (%) MCI  vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

LeNet-5 87.6 82.5 91.7 90.7 71.1 86.1 44.6 72.8
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Table 6
Comparison of the classification performances for different feature extractions.

Methods
AD vs. NC (%) MCI  vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

ROI feature 81.7 67.1 94.3 88.3 66.8 78.9 41.3 70.2
Voxel-wise feature 86.4 79.3 92.5 91.9 71.5 82.8 51.5 75.6

large discriminative power. For each subject, the patches included
ResNet 88.3 86.0 90.4 90.4 72.9 78.9 62.4 71.5
DenseNet 89.5 87.9 90.8 92.4 73.8 86.6 51.5 77.5

ural MRI  data of ADNI. First, we compare our proposed method to
hree state-of-art methods, which compute the GM volumes of 93
OIs for representation as (Zhang et al., 2011), compute the voxel-
ise grey matter density maps for features as (Liu et al., 2012), and

uild a DenseNets on the whole brain image. For fair comparison,
he same image preprocessing and classifier, i.e., softmax classi-
er, are used for all compared methods with only difference on

eature extraction in the experiments. For extraction of ROI and
oxel-wise features, the rigid registration and tissue segmentation
re required. In our experiments, FAST in the FSL package (Zhang
t al., 2001) is used to segment the cerebellum removed MRIs into
hree different tissues: grey matter (GM), white matter (WM),  and
erebrospinal fluid (CSF). The rigid registration tool of HAMMER
Shen and Davatzikos, 2002) is used for the nonlinear MR image
lignment and mapping the image into 93 manually labeled ROIs
Kabani et al., 1998). For each labeled MR  image, we compute the
ormalized volumes of GM tissue in all ROI regions as the features.
or extraction of voxel-wise features, the same registration and
issue segmentation methods as ROI based methods are used for
air comparison. After the image warping by HAMMER (Shen and
avatzikos, 2002), the tissue volume within any size of region is
reserved and the warped mass-preserving tissue volumes reflect
he spatial distribution of tissues in an original brain called as the
issue density maps. The spatially normalized GM density maps
re used as voxel-wise features for classification. In addition, one
irect deep network model is to build a DenseNet on the whole
rain image. Since the whole brain image size is of 256 × 256 × 256
oxels, it is too large to train the DenseNet with our GPU GTX
080 Ti because of the memory limit. Thus, we remove the vox-
ls of zeros values and down-sample the whole brain images by

 to obtain the brain images of 98 × 78 × 76 voxels for training
he DenseNet. This can not only address the problem of memory
imit but also alleviate the overfitting problem caused by training
 large number of deep network parameters with a small number
f training subjects. Table 6 shows the comparison of the classi-
cation performances with these different methods. From these
One  DenseNet 85.5 83.4 87.3 88.7 70.3 77.9 56.8 76.0
Our  method 89.5 87.9 90.8 92.4 73.8 86.6 51.5 77.5

results, we can see that the voxel-based method performs better
than the ROI-based method and one DenseNet. Nevertheless, our
proposed method achieves a very competitive classification accu-
racy of 89.5% for classification of AD vs. NC, which is higher than
the voxel-based method (86.4%). For classification of MCI  vs. NC,
our method also achieves the accuracy of 73.8%, higher than the
voxel-based method (71.5%). It is worthy to note that the evalua-
tion here is on the feature extraction, not the design of classifier,
so the results may  be different from those reported in literature
(Zhang et al., 2011; Liu et al., 2012).

3.5. Discussion

Instead of extracting the handcrafted features from MR images,
our proposed method constructs multiple cluster DenseNets to
gradually learn the multi-level features for global image classifica-
tion. Each DenseNet captures the patch-level image features which
are combined to generate higher-level features to achieve more
robust classification. There are no tissue and ROI segmentations
and no rigid registration required in processing the brain images
so that the computation cost is reduced. However, there are still
some limitations in the proposed method. First, the parameters
of the DenseNet model, such as the number and types of layers,
may  not be optimally determined. This problem can be alleviated
by optimizing the parameters using the validation data set. Sec-
ond, it is not easy to visualize the learned features by the proposed
method for interpretation of the brain regions relevant to neurode-
generative disease (i.e., AD or MCI) for the clinical application. The
learned features have no sufficient clinical information to find the
related ROIs for clinical understanding of brain abnormalities. To
facilitate the interpretation of diseases, we select the top clusters
with high classification accuracies because these cluster have the
in the selected discriminative clusters are considered as the rele-
vant regions. Thus, we  can obtain a relevance map  by compiling the
masks generated by all the selected image patches for each subject.
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Fig. 6. The top relevant regions of interests (ROIs) in b

his map  shows the importance of ROIs in prediction of disease
tatus. To facilitate the interpretation, we map  the relevance map
o a template with 93 manually labeled ROIs for reference (Kabani
t al., 1998). The more patches are mapped to the ROI for different
ubjects, the higher probability the ROI have to be relevant to dis-
ase. For each ROI, we sum the proportion of the voxels covered by
he relevance maps from different subjects. Fig. 6 shows the top 6
OIs of brain with the high relevance to AD diagnosis. These areas
eem to be consistent with the ones that are mostly affected by AD,
ainly in amygdala, hippocampus, entorhinal, thalamus, temporal,

arahippocampal gyrus (Zhang et al., 2011; Liu et al., 2015a).
As for the computation cost, the proposed classification algo-

ithm consists of both the offline training and online testing stages.
n the training stage, the computation includes the K-means clus-
ering and DenseNets training, which take 0.5 h and 2.8 h in our
xperiments, respectively. In the testing stage, computation cost is
.84 s to test the proposed algorithm for a given image. The experi-
ents are all conducted on PC with GPU NVIDIA GeForce GTX1080

i of 12GB memory.

. Conclusion

This paper has proposed a classification method based on combi-
ation of multiple cluster DenseNets for AD and MCI  diagnosis using
R brain images. The whole brain image is partitioned into a num-

er of local regions and a number of 3D patches are extracted from
ach image region. K-means clustering is used to group patches
ith similar spatial structure into several clusters and a DenseNet is

uilt and trained for each cluster to extract the patch-level features.
he features learned by multiple cluster DenseNets are gradu-
lly aggregated for image classification. The proposed method is

 learning based method to jointly learn the feature representa-
ion and classification without prior domain knowledge. No rigid
egistration and segmentation is required in the image processing.
xperimental results and comparison demonstrate that the pro-

osed method can solve the small training set problems and achieve
igher accuracy to classify the AD from NC and MCI  from NC using
tructural MRI  scans. Comparison with the existing methods shows
he promising classification performances for AD diagnosis. In the
overed by the discriminative patches in AD diagnosis.

future work, the proposed method can be extended to other brain
imaging modality such as PET image and extended for multimodal
brain image analysis.
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